P. G. Pérez-Gonzalez

Understanding the mass assembly of galaxies at 0<z<4: Spitzer's contribution and
open questions

We will present the main results of our research about the assembly of galaxies at
z<4 based on the data obtained by the deepest Spitzer surveys carried out with
IRAC and MIPS during the cryogenic mission. These data in the near-, mid- and far-
IR have allowed us to obtain unprecedentedly robust estimations of the obscured
SFRs and stellar masses of distant galaxies. Analyzing SFR and stellar mass
functions in several redshift bins at 0<z<4, we have found and quantified that
galaxies formed following a downsizing scenario, with the most massive systems
assembling early in the lifetime of the Universe and very quick (i.e., with very high
star formation efficiencies, and a significant amount of obscured starbursts), while
less massive systems assembled later and/or more slowly. However, Spitzer has
left several open questions that still hamper our current understanding about the
formation and evolution of galaxies. I will discuss three of these results and how
future facilities such as Herschel, ALMA, E-ELT or JWST can lead to a more robust
and detailed (with higher spatial resolution and depth) characterization of how
galaxies formed in the early Universe: (1) the mid-to-far IR colors of galaxies
evolve with redshift, departing considerably from the typical values observed in
the local Universe, specially at z>1.5-2.0; (2) the IMF might not be universal,
evolving to a top-heavy IMF at z>1.5; (3) obscured AGN may be ubiquitous in high-
z galaxies, playing a significant role in the downsizing scenario.
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Ellis et al. (2000)
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The paradigm for galaxy formation: data
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Is all the fish sold?
Do we really understand galaxy evolution?
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My job: trying to understand galaxy formation

- Reasons for Spitzer’s breakthrough on

how galaxies assembled their mass?
- IRAC observing window and sensitivity allows to probe
the rest-frame NIR (best proxy for 9., ) up to z~4.
- IRAC data is extremely useful for photo-z’'s.
- MIPS is able to detect galaxies with obscured
star formation or nuclear activity up to z~3.

- Spitzer gives good estimates photo-z's, SFRs, and
stellar masses up to z=4 (12 Gyr, 90% Hubble time).

- Analyze formation and evolution scenario.
- Role of (un jobscuraed AGH in evolution (not today).
0 Some results and open questlons.




How&when galaxies formed: SMF @ z<4
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The current paradigm vs. downsizing

Look—back time (Gyr)
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Quantifying downsizing
Look—back time (Gyr)
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Mass assembly vs. size/morphology
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Mass assembly vs. size/morphology
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More fun: evolution of the
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Do we really understand galaxy formation?
Look—back time (Gyr)
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Do we really understand galaxy formation?

Look—back time (Gyr)
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Do we really understand galaxy formation?
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Do we really understand galaxy formation?
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WEIRD EXPLANATIONS CHART (STARTING FROM WEIRDEST)

1. SFRs are all wrongly high (but different estimators agree well)

2 Stellar masses are all wrongly high (only factor 30-50%
systematic offsets; e.g., using Maraston’s library)

3. AGN contamination (but 10%-20% in numbers at most)

4 Completeness issues (need to combine selections properly)

4 IMF not universal (also some Galactic evidence: Maness+ 07)

4. Change in star formation mode (burst mode vs. continuous)
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And now what ? How can we advance

- We need data to carry out a detailed & robust
study of stellar populations in z>1 galaxies.

- More spec-z’s and better photo-z’s.

- Better SFRs/extinctions (Spitzer, Herschel, ALMA,
and UV-to-IR consistent fits to data).

- Better masses, linked to better stellar population
ages and star formation histories.

- Better physics in modeling of data: synthesis
models in the NIR, dust emission models, IMF,
AGN/SF interaction, star formation quenching, etc...

“I think you should be more
oxplicit hore In step two.”



Better IR-based SFRs: Herschel data
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See also:
Papovich et al. (2007)

Better IR-based SFRs: also with Spitzer!!

Barro et al. (2010)
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Chary & Elbaz 2001

Herschel data

2009

Rieke et al.

Better IR-based SFRs

Rex et al. (2010)
See also Elbaz et al. (2010)
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What can Herschel give us?

0.1 1

Pérez-Gonzalez et al. (2010
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Need for better dust emission templates
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Need for better dust emission templates
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Characterizing in detail high-z galaxies
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Ages for high-z galaxies
T SR R L R

2.5

BL 2538
_Mnll 2584
- Fell 2600
7~ ~Fell 2608
NH 33680

I | P o ) I | It |

S B T
2 \ ) 3 g g %
’0? - § b = ; 3
6 sl )
OE m
= 5 . ~+
= I 13 objects ||| x
1 | in 480 hours

with VLT!!!

=TT T 1

GMASS 480-hour spectrum

— BCO03,1.0Gyr

J SSP, A,=0, Z2=2,

‘| —_ MO5, 1.0 Gyr,
SSP, A,=0, 2=2,

0 5 ||‘ F'Ill“"‘ -

1 1 l L
3000

Amt (A)

1 1 I
3200

3400
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ESO/GTC Large Program: SHARDS, Survey for
High-z Absorption Red and Dead Sources




SHARDS: spectro-photometry in GOODS-N
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SHARDS: indices (e.g., Mg,,) with photometry
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SHARDS: indices (e.g., Mg,,) with photometry
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already dead by that epoch).
Coalescence probably more important in less massive
systems (hierarchical scenario), which assembled more
slowly (and later).

Challenge for models!!!

o Most massive galaxies (M>101!! M) increased their mass

from SF alone bg up to a factor of 2 (spheroids) and 4
(disks) from z~2. In contrast, spheroids increased their
size x6 and disks x3. Mergers? Wrong sizes?

@ High-z ULIRGs are not like local ULIRGs!!: the dust
emission is different (warm vs. cold dust ratio, PAH
abundance/prominence), maybe obscured AGN are

important (hc omponent on top), t izes of the
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Some conclusions and onen auestions

Galaxy formation follows a .
Most massive galaxies collapsed first, (almost

(early and quick) at z>1.5-2.0 (some are
already dead by that epoch).
Coalescence probably more important in less massive
systems ( , Which assembled more
slowly (and later).

Challenge for models!!!

Most massive galaxies (M>1011 M)

) by up to a factor of 2 (spheroids) and 4
(disks) from z~2. In contrast, spheroids
x6 and disks x3. Mergers? Wrong sizes?

the dust
emission is different (warm vs. cold dust ratio, PAH
abundance/prominence), maybe obscured AGN are
important (hot dust component on top), the sizes of the
star-forming regions are larger (?).

non-Salpeter IMF,
IMF non-universal?, AGN contamination larger at high-z?,
overpredicted SFRs at z>27?, change in SF mode (short and

.‘ I ? 7
.. intense bursts 33{?55 : rbuﬁseilnlgg masses are all wrong?,

rahada, June 21-25, 2010
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Importance of obscured SF: UV vs IR @z<1
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SHARDS: Survey for High-z Absorption Red
and Dead Sources

- Unbiased survey of passively evolving z>1 ETGs,
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urvey for High-z Absorption Red
and Dead Sources

with resolution (R=50) for detailed study.

from color (DRGs) or color-color
(BzK)

- Data as good for detailed study as spectroscopy
(galaxy-by-galaxy and going much fainter).
- Very good photo-z’'s and stellar population fitting.

- Proposed as an ESO/GTC Large Program in
March 2009 (PI: Pérez-Gonzalez, 20 co-I's).

2 GTC/OSIRIS pointings in GOODS-N with 25 filters.

to
buy set of 25 medium-band (FWHM=17 nm) filters.

Extreme Starbursts in the Local Universe
Granada, June 21-25, 2010
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