C. Tadhunter
AGN feedback: when, how, and how much?

Despite that general importance for understanding the evolution of massive
galaxies, we still understand relatively little about AGN-driven outflows and the
impact they have on their host galaxies. Concentrating on samples radio-loud AGN,
[ will review the following aspects: the triggering and timing of AGN activity; the
link between AGN and starbursts; the observational evidence for AGN outflows;
and the energetic significance of AGN-induced outflows compared with those
driven by starbursts.
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Activity and galaxy evolution
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Star formation in major gas-rich mergers
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Uncertainties with hydrodynamical
simulations

« Sub-element microphysics (feedback, star
formation, eqn. of state etc.)

« Resolution: the resolutions of most of the
simulations relatively poor (~100pc); they do
not cover key aspects of AGN physics

* The proportion of the available accretion
energy that goes into the quasar ouflows (the
“coupling efficiency”. ~0.005 -- 0.1P

acc)



AGN feedback: key questions

How and when are AGN triggered in
the course of galaxy evolution?

Are AGN and starbursts always
triggered concurrently?

What is the observational evidence for
AGN-induced outflows?

How energetically significant are AGN-
induced outflows?



Triggering AGN: how and when?



Deep Gemini imaging of the 2Jy sample

The diversity of morphologies observed in powerful radio galaxies
suggests that AGN can be triggered at a variety of stages in
galaxy interactions (Ramos Almeida et al. 2010).



Triggering starbursts in major galaxy mergers
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Triggering starbursts in major galaxy mergers
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Starbursts in radio galaxies: occurrence

 Starburst rate from optical spectroscopy:
- 2Jy(0.15 <z <0.7): 20 -- 35% (22 objects)
Tadhunter et al. (2002)
- 3CR(z<0.2): 33% (14 objects)
Aretxaga et al. (2001), Wills et al. (2002)
- 2Jy (z<0.08, FRIs): 25% (12 objects)
Wills et al. (2004)

 Far-IR continuum excess+MFIR colours+PAH:

- 2Jy(0.05 <z <0.7): 15--35%
Dicken et al. (2009,2010)




Starbursts in radio galaxies: occurrence

 Starburst rate from optical spectroscopy:
- 2Jy(0.15 <z <0.7): 20 -- 35% (22 objects)
Tadhunter et al. (2002)
- 3CR(z<0.2): 33% (14 objects)
Aretxaga et al. (2001), Wills et al. (2002)
- 2Jy (z<0.08, FRIs): 25% (12 objects)
Wills et al. (2004)

 Far-IR continuum excess+MFIR colours+PAH:

- 2Jy(0.05 <z <0.7): 15--35%
Dicken et al. (2009,2010)

The lack of major starburst components in the majority
of powerful radio galaxies (> 65%) demonstrates that,
while the activity may be triggered in galaxy interactions,
iIn most cases it is not triggered at the peaks of major,
gas-rich mergers.




The post-starburst radio galaxy 3C305
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The post-starburst radio galaxy 3C305

3C305 (z=0.042) Heckman et al. 1986



The post-starburst radio galaxy 3C305
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Starburst dominated objects: the ULIRG 3C459

3C459 (z=0.22) NTT+EMMI
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The Ages of the YSP in ULIRG and PRG
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The Ages of the YSP in ULIRG and PRG
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Stellar masses of starburst radio galaxies
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AGN %
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The AGN contribution in ULIRGs
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Despite being observed close to the peaks of major
galaxy mergers, many ULIRGs do not show energetically
dominant AGN components. This further suggests an
intermittent gas supply.
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Triggering radio-loud AGN: summary

« Strong evidence that radio-loud AGN are triggered in
galaxy interactions

« Some are triggered at the peaks of major gas-rich
mergers and are associated with luminous young stellar
populations (ULIRG-like)

« But the majority are triggered at earlier or later stages of
gas-rich mergers, by galaxy encounters, by minor
mergers, or by mergers that are relatively gas poor

This diversity is likely to reflect the fact that sufficient
fuel can be delivered to the nuclear regions at several
stages during galaxy interactions of various types.




Feedback mechanisms



Powerful radio galaxies: energetics

 Radiation

Quasar luminosity:10#* — 1047 erg s-!
Luminosity integrated over lifetime:10°7— 1062 erg

« Jets

Jet power:1043 — 1047 erg s-!

Jet power integrated over lifetime: 1057 — 1062 erg
* Winds

Total wind power: ~0.005 - 0.1P,_?

Wind power over lifetime: 1056 — 106! erg?
Comparison:

Luminosity of hot ISM 1n a cluster: 104 — 10% erg s-!
Grav. binding energy of gas in spiral: 1058 — 109 erg



Relativistic outflows (“radio mode”)



Cygnus A: impact of jets on hot ICM

Chandra X-ray image (Wilson et al. 20006)



Cygnus A: impact of jets on hot ICM
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Cygnus A: impact of jets on hot ICM
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Cygnus A: impact of jets on hot ICM

15

o SR ol I gsi ST VES

Dec. (2000)

404315

Chandra X-ray image (Wilson et al. 2006)
M ~10"M,yr™"  f 4 10¥erg/s
E/L, ~107



Radio-excavated cavities in the X-ray
haloes of low luminosity radio sources

MS0735.6+7421 Perseus A
McNamara et al. (2005) Fabian et al. (2003)

Energies associated with the X-ray cavities
and shocks: ~10%° - 1062 erg




A massive outflow associated with the jet-cloud interactions
in 3C171 (z=0.231)

T T

(FOETE S 5=
)

Halpha TTF Image with
Becm Radio Overlayed

e

Declination (J3000)

L2

L ST 11* 10* L4

Poght Ascension (J2000)

WHT+ISIS Spectrum

Spatial

Clarke et al. 1998
| —_— WHT+ISIS

[OIN{4858) [OIN5507)



A massive outflow associated with the jet-cloud interactions

Declination (J9000)

in 3C171 (z=0.231)
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offset [arcsec]

Outflows in high redshift
radio galaxies (z~2)

300 < M <1000 M, yr™
10" < E <10% ergs™

0.001< E/L,,, <0.1
offset [kpc]
- 20 10 0 10 20
— - ] 30
. 120
L]
03
e o B 400 .
! PR _ ti200 lo €
1t 0 km/s ‘
Nesvadba et al. (2006, 2008) 2| -igg ” N
FIA

4 3 2 -1 0 1 2 3
oifset [arcsac)



= w o HI (21cm) Outflows in
M i ] i Nearby Radio Galaxies

...................

- Broad blueshifted wings extending
up to -2,000 km/s

- Significant mass outflow rates:

M~12-56M_ yr™

_ - There is clear observational
RACHE. =, evidence that the neutral
outflows are jet-driven.

. . | Morganti et al. (2005b), WRST
| <2 | with broadband capability



Fast HI 21cm outflow in 3C305: evidence
for jet acceleration
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Near-nuclear outflows (“quasar mode”)



The observational evidence for
near-nuclear outflows in AGN

g b o | Clear evidence for outflows
| B AoE ‘;' i in a large fraction of the local
AGN population
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Narrow absorption line systems in AGN

............................................

...........................................

* Detected in UV/X-ray spectra of
~60% of nearby type 1 AGN

» Absorbing gas has a high
ijonization state

« Absorption features strongly
blueshifted (-2100 < AV < 0 km s1)
=> high ionization outflows
close to the central AGN

« Radial scale: ~1 - 25pc

« Mass outflow rates relatively

modest: M <1 M, yr"
(but large uncertainties in radi,

geometries, physical conditions
of absorption line systems)

e.g. Crenshaw et al. (2003)




Cygnus A
viewed by
HST




The quasar
nucleus in

Cygnus A #l

Cygnus A

HST/NICMOS infrared 2.2um image

Tadhunter et al. (1999)

viewed by
HST

Optical images




Kinematic components in Cygnus A

Infalling molecular/HI
cloud (+300 km's)

= Extreme jet-induced
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Outflows on a 1-3kpc scale in Cygnus A
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Outflows on a 1-3kpc scale in Cygnus A
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Outflows on a 1-3kpc scale in Cygnus A
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Cygnus A: energetics

Jet and radiative power:

Eddington luminosity: 3.3x1047 erg s-'

Radiative bolometric luminosity: (0.5--2.0)x1046 erg s-1
Moderate Eddington ratio: Lvet/Lea <006
Jet power: ~(0.3-30)x1046 erg s

OQutflows:

« Power in expanding cocoon (X-ray): 4x10%°erg s
* Power in emission line outflow (NLR): 2:3x10* erggss)

kin



Warm outflows in Seyfert-like ULIRGs
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PKS1549-79 (z=0.15): a proto-quasar in
the local Universe

Flat radio spectrum

One-sided VLBI jet (radius
~420pc)

Variability
ULIRG -- as luminous
as 3C273 in mid-IR

Significant HI 21cm
absorption

< HI 21cm

Holt et al. (2006)



Emission line kinematics in PKS1549-79
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Emission line kinematics in PKS1549-79
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The early stages of radio source evolution




The early stages of radio source evolution
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6.0 7
PKS1549-79
SSEAAT/IRIS2

- K-band

[
L

4.5+
[

4.0k

/i

Pau

3 .\J | . i ‘ W
."SEM bd ‘1\“‘}3‘111“”# .'514') Mﬁ*""!‘j mh ’{‘M‘}M‘v‘ qu\ lk
' Al

vvvvv

FWHM=1950+/-40 km/s -
Bro :

P e 0 Y

{
"
-
-
4

H,/[SiVI] H, -

AAAAAAAA

Wavelength (A)

@\

[OIL}-Emitting
- Disk/Cocoon



HST/ACS images of PKS1549-79

o

0.2 arcsec

HRC [Oll] image

1 arcsec

WFC continuum image (5900A) Batcheldor et al. (2007)
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Nature of the AGN in PKS1549-79

Narrow line Seyfert 1 (FWHM(Paa) < 2000 km/s)
Black hole mass: 3.6x107 -- 2.4x108 M

(virial) (from M)
High Eddington ratio: 0.3 <L, /L_,; <35, typical of

NLSy1 (but larger than many quasars which have
L, /L.gq<0.1)

Relatively modest warm gas outflow:
0.12<M <12 M__yr’'

sSun

51x10% < E <5.1x10% ergs™

1.5x10°<E/L,, <1.5%x10™
Holt et al. (2006)



Reasons for the (apparent) lack of
energetic near-nuclear outflows
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» Possible that the energetically dominant
outflow component has not yet been
observed because it is in a hotter or cooler
phase. (Are we really observing the piston?)



Reasons for the (apparent) lack of
energetic near-nuclear outflows

» Possible that the energetically dominant
outflow component has not yet been
observed because it is in a hotter or cooler
phase. (Are we really observing the piston?)

* |s a large fraction of the near-nuclear outflow
obscured at optical/UV wavelengths?



Massive, high ionization outflow in PDS456 (z=0.18)

Reeves et al. (2003)

- Radio quiet quasar

- X-ray absorption edge
iIndicates a high velocity
outflow AV~50,000 km/s

M ~10M_ yr™
E ~10%erg/s

E/L, ~0.1

(but large uncertainties
In covering factor,
geometry, radius etc..)



Outflow comparison



Neutral outflows in ULIRGS:
a useful fiducial

- Neutral outflows detected using
NalD absorption in ~40 - 80%
of nearby ULIRGs:

-1200 < Av < -100 km s™'
10 < M < 300 M, yr'
10 < E <6x10" ergs™

Xies

gala

- But no significant differences
are found between the neutral

( - R A, outflows detected in ULIRGs
0 1 2 3 . .

log( dM/dt / M, yr-' ) with and without powerful

Seyfert nuclei...

No. of

Rupke et al. (2005a,b)



AGN Warm Absorption Outflows (UV/X-ray)
In Galaxy Bulges (NLR/BLR)
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Mass outflow

AGN Warm Absorption Outflows (UV/X-ray)
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Mass outflow

AGN Warm Absorption Outflows (UV/X-ray)
In Galaxy Bulges (NLR/BLR)
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Mass outflow 1
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Mass outflow 1

AGN Warm Absorption Outflows (UV/X-ray)
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Mass outflow |

AGN Warm Absorption Outflows (UV/X-ray)
In Galaxy Bulges (NLR/BLR)
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Conclusions

 Triggering: although radio galaxies are triggered in galaxy
interactions, they are not solely triggered at a unique phase
of a particular type of galaxy interaction

e Jet-induced outflows: have a major impact on the gas on all
scales 1n host galaxies of AGN with powerful relativistic
jets; they are likely to directly affect the star formation in
the host galaxies and stop the hot ISM/ICM from cooling

e Near-nuclear AGN outflows (*quasar mode™): despite the
clear observational evidence for warm and cool near-
nuclear outflows in a large fraction of nearby AGN, they
are often much less powerful than required by the AGN
feedback models, and less powerful than starburst-induced
outflows
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Evidence that the X-ray detected outflows
are associated with the AGN

- ST

X-ray spectra of PG1211: New estimates of the outflow

evidence for a variable FeK velocities don’t show such good

absorption feature. agreement with the galaxy
recession velocities...

Reeves et al. (2008)



The black hole in Cygnus A

2.0 micron image
HST/NICMOS
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Merger sequence for starburst radio galaxies

Pre-merger Merger Post-merger Late Post-merger
|
|
3C48 B20648+27 Centaurus A
|
3c433 PKS1549-79 3C213.1
3C305 Fornax A ——

|
3C321 PK$2135-20

PKS1345+12 aran?

|
-1.0 0.0 1.0
Time since merger (Gyr)



Objects with v.young starburst
components

PKS0023-26 (z=0.340) - VLT/FORS2 PKS0409-75 (z=0.69) - VLT/FORS2

oI A - S IR NSRS S . =k SRS LIPS 8 S FL SR
L0 (00 SO00 TO00 2000 UL 40x0)
Rest wavdength (Angstroas) Rest wavdength (Angstroas)

YSP age: 30Myr YSP age: 10Myr
Reddening: E(B-V)=0.8 Reddening: E(B-V)=0.9
Y SP mass proportion: 9% Y SP mass proportion: 4%

These objects have:

Holt et al. (2007) - Low UV polarization

- Relatively weak narrow lines
- No broad lines detected
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Starburst radio galaxies general properties

Based on a detailed spectrosynthesis modelling of a sample of
22 radio galaxies with good evidence for Y SP:

*  95% of starburst radio galaxies show signs of morphological
disturbance (tidal tails, fans, shells, dust lanes, double nuclei etc.)

* Young stellar populations (YSP) contribute a significant proportion of
the total stellar masses (5-40%)

« The YSP are spatially extended -- they generally detected across the
full extents of the host galaxies over which accurate measurements can
be made (although brightest in the nuclei)

Overall, the results are consistent with the triggering
of the activity in major, gas-rich galaxy mergers/interactions




Two main groups of starburst radio galaxies

o LIRG/ULIRG-like systems (t
- Most have:

Lou, >10°W; L >10"L_,

- Radio source triggered quasi-simultaneously
with starburst

<0.1Gyr)

ysp

 Post-starburst systems (t

ysp
- Most have: 15 1
L[om] <10-W; L, <10 L,

> 0.2 Gyr)

- Radio source triggered (or retriggered) a
significant period after the starburst episode



PKS1549-79: Optical Spectrum
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Radio-Optical Morphological Associations
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Galaxy merger simulations

di Matteo et al. (2005)



Galaxy merger simulations

di Matteo et al. (2005) Models require:
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di Matteo et al. (2005) Models require:




AGN Unification

Barthel (1989)



Intrinsic or local (Galactic) X-ray absorption?

A

1 1

n
10*

0
- SN

AGN outflow velocity (km s

Inferred outflow velocity -->

1000

aaal A A A Senfanbmfiafal
1000 10*

McKernan et al. (2004) cz -->



Outflows in 3C265 (z=0.82)

[OII]

Solorzano Innarea et al. (2002)
Taurus Tunable Filter on WHT



Outflows in 3C265 (z=0.82)

. [omyjom].

i s T
" 100kpe -
om T A E
. - 7 — ‘- ......

Solorzano Innarea et al. (2002)
Taurus Tunable Filter on WHT



Outflows in 3C265 (z=0.82)
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Outflows in 3C265 (z=0.82)

High velocity cloud
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Integral field spectroscopy of 3C265
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Optical/near-IR continuum SED
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Disk wind models of outflowing absorbers

GEOMETRY Sages ' FTAXONOMY

PHYSICS [Lag radiel scale | KINEMATICS

Elvis (2000)



sensitive searches for neutral

outflows in complete samples of AGN using Na
line

continuing
searches at X-ray wavelengths, perhaps also using
optical/IR coronal lines

ULIRGs, NLSyl --
objects with large Eddington ratio -- perhaps also

the population of red quasars detected 1n near-IR
surveys



Neutral outflows in ULIRG/LIRGS:

Jet-cloud interactions in radio galaxies:

Warm outflows in radio galaxies (NLR):

Neutral (HI) outflows in radio galaxies (NLR):

High ionization X-ray absorber in PDS456:
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M~10M_ yr

High ionization X-ray absgrPLer in I8I?S456: E ~10%erg s~
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Black hole growth/feedback models:
the quasar mode

 AGN and starbursts triggered in major galaxy mergers

e The black holes grow rapidly through merger-induced
accretion; in some phases this accretion occurs at close to the
Eddington rate

e The major black hole growth phase is obscured by the large
concentration of dust/gas concentrated in the nucleus by the
merger

 The AGN drive powerful outflows that remove the gas from
the central regions and halt both star formation and further
accretion

* The models require that ~5-10% of the accretion power of the
AGN drives the winds

(e.g. di Matteo et al. 2005, Hopkins et al. 2005)
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