D. Rupke

Gas flows in Starburst Mergers

Starbursts in merging galaxies are bookended by gas flows. They are preceded by strong radial inflows that fuel the star formation, and followed by outflows of enriched and entrained gas that act as regulatory feedback. Using both observations and simulations, I will present new results on (1) how we constrain gas inflows by tracking metals in starburst mergers and (2) how we are finally revealing the complex structures of the ubiquitous gas outflows in merging galaxies.

The Ins and Outs of Gas Flows in Major Mergers

David Rupke Institute for Astronomy, University of Hawaii

Collaborators: Lisa Kewley, Josh Barnes, Jenny Shih, Dave Sanders (IfA); Lisa Chien (STScI); Sylvain Veilleux, Hannah Krug (UMD); Andrew Baker (Rutgers)

Historical Aside ...

	14	ı	22	16	57.19	54	24	39.3	Faible ; très-petite ; ronde ; forte condensation centrale.
	15	ı	22	18	38.39	54	25	34.2)	15, 16 et 17 ont à peu près le même aspect que 14; 15 est un peu plus faible et plus petite; 16 est un peu plus brillante et moins petite; 17 est notablement plus faible et plus petite.
	16	ı	22	18	40'04	54	30	4.0	
	17	ı	22	18	43.19	54	32	21.8)	
_	18	т.	22	,22	28:50	73	51	1.6	Excessivement excessivement faible et petite; ronde; légère condensation centrale, avec un très-petit point brillant à peu près central.
Г	19	92	22	30	13.40	56	41	4 ^{6·8})	Les quatre nébuleuses 19, 20, 21 et 22 sont excessivement excessivement faibles; excessivement petites; très-difficilement observables. La plus belle est 19; puis viennent 20, 21, 22. Cependant 22, quoique la plus petite des quatre, est plus brillante.
	20	n	22	30	19.22	56	40	30.2	
	21	п	22	30	24.27	56	39	52.4	
	22	п ,	22	30	24.92	56	41	35.2)	
	23 .	0	22	32	56.70	50	34	23.0	Excessivement excessivement faible; excessivement petite; ronde; un peu de condensation centrale enveloppe quelques très-petites étoiles.
	24	p .	22	41	56.69	50	24	56.1	Excessivement excess. faible; très-petite; ronde; légère condensation centrale.
	25	q	22	52	44.36	54	51	38.6	Excessivement excess. faible; très-petite; irrégulièrement arrondie; con- densation centrale mal définie; plusieurs très-petits points brillants.
	26	r	22	55	23 47	88	24	12.3	Excessivement excessivement faible, à peine observable; ronde $D = I'_{5}$; condensation centrale à peine sensible,
	27	8	23	6	32.63	55	47	6.5	Excessivement excess. faible, à peine observable ; irrégulièrement arrondie D=45"; condensation à peine sensible ; quelques points br. soupçonnés.
	28	ŧ .	23	10	18.64	66	10	44.2	Excessivement excessivement faible ; modérément étendue ; irrégulièrement arrondie ; enveloppe plusieurs très-petites étoiles.
	29	26	23	20	30.26	65	36	4.9	Excessivement excessivement faible et petite ; irrégulièrement arrondie ; une peu de condensation centrale ; enveloppe un très-petite *,
	30	v	23	46	55.11	62	24	19.2	Excessivement faible et petite; ronde; condensation centrale.
					Le No. 12 est 14, 15, 16, 17	peut- sont	être voisi	identique nes de 47	e avec 440 Lassell. 74 et 475 Lassell, mais distinctes de celles-ci.

E. Stephan 1877, Astronomische Nachrichten and MNRAS

335

New Nebula at Marseilles.

April 1877.

INFLOW

INFLOW

STAR FORMATION

HST . WFC3/UVIS

Star-Forming Region 30 Doradus

NASA, ESA, F. Paresce (INAF-IASF, Italy), and the WFC3 Science Oversight Committee STScI-PRC

INFLOW

STAR FORMATION

Star-Forming Region 30 Doradus HST • WFC3/UV1

NASA, ESA, F. Paresce (INAF-IASF, Italy), and the WFC3 Science Oversight Committee STScI-PRC

OUTFLOW

1 INFLOW

STAR FORMATION

NASA, ESA, F. Paresce (INAF-IASF, Italy), and the WFC3 Science Oversight Committee STSci-PRC

OUTFLOW

Inflow: Clues from the Mass-Metallicity Relation

Major mergers fall below the M-Z relation

Rupke+08

Lee+04, Kewley+06, Hoopes+07, Rupke+08, Ellison+08, Michel-Dansac+08, Peeples+09, Alonso+10

Model: Metal Dilution

Isolated Galaxy

Kewley+06

Model: Metal Dilution

Isolated Galaxy

Interaction-Induced Inflow (and Outflow)

Kewley+06

Model: Metal Dilution

After Inflow

Kewley+06

Interaction-Induced

Inflow

(and Outflow)

Simulations of Metal Dilution

 Reproduce magnitude of observed dilution of nuclear Z (Rupke+10a, Montuori+10)

Montuori+10

Simulations of Metal Dilution

- Reproduce magnitude of observed dilution of nuclear Z (Rupke+10a, Montuori+10)
- Predict shape of radial gradients in Z (Rupke+10a)

Rupke+10a

Test: Gradients in Interacting Galaxies

Sample

- 16 gals / 9 systems
- Mass ratios > 1/3
- Sep. ~ 10 30 kpc
- 300+ HII regions

Control

12 late spirals

Kewley+10 (ApJL, submitted) Rupke+10b (ApJ, submitted)

Spitzer/Hubble View of NGC 2207 & IC 2163 NASA, ESA / JPL-Caltech / STScl / D. Elmegreen (Vassar)

Spitzer Space Telescope • IRAC ssc2006-11b

Data Analysis

Stellar continuum fits with Gonzalez-Delgado+05 models

Multi-component emission-line fits with MPFIT (Markwardt)

Abundance Maps

 Oxygen abundances from [NII]/[OII] (Kewley & Dopita 2002)

 Control sample reprocessed using same abundance diagnostic

Radial Abundance Gradients

Isolated vs. Interacting Gradients

Interacting gradients lower by factor of >2 on average

Simulated vs. Observed Gradients

Outstanding agreement!

Implication:

- Gradients not sensitive to ongoing SF (distributed and/or shock-induced SF? Barnes 02)
- Ongoing SF consumes small % of gas prior to second pericenter

Comparison to L-Z relation

 Near-IR L-Z relation (Salzer+05) Nuclear Z (control) Nuclear Z (interacting) at a given M_{κ}

Gradients vs. L-Z offset

- Simulations predict: (Rupke+10)
 - Gradient changes first
 - Nuclear Z changes more slowly

Gradients vs. L-Z offset

- Simulations predict: (Rupke+10)
 - Gradient changes first
 - Nuclear Z changes more slowly

Data agrees!

Gradients vs. L-Z offset

- Simulations predict: (Rupke+10)
 - Gradient changes first
 - Nuclear Z changes more slowly

Data agrees!

Simulated vs. Observed Gradients

Data matches shape of simulated profiles near first turnaround

1 INFLOW

STAR FORMATION

NASA, ESA, F. Paresce (INAF-IASF, Italy), and the WFC3 Science Oversight Committee STSci-PRC

2 OUTFLOW

Outflow Frequency and Morphology

- Winds are found in all starburst mergers
- Differences in detection rate with SFR related to morphology

Rupke+05b (also Martin 05)

Starburst vs. AGN Winds

- Large scale winds have similar properties in SB and AGN (U)LIRGs
- Seyfert 1s have high velocity winds, probably at small scales

Rupke+05c, Krug+10 (also Martin+05)

Starburst vs. AGN Winds

- Large scale winds have similar properties in SB and AGN (U)LIRGs
- Seyfert 1s have high velocity winds, probably at small scales
- Exception: Mrk 231 (see also Fischer talk!)

Rupke+05c

3D Observations of ULIRG Winds

Goals

- Understand change in structure with SFR
- Search for differences btwn. SB and AGN winds
 Methods
- Deep obs. of ULIRGs with known winds
- Neutral gas absorption + ionized gas emission

3D Observations of ULIRG Winds

F10565+2448

z = 0.043
GMOS IFU

Shih & Rupke 2010, submitted

3D Observations of ULIRG Winds

The Multiphase Wind

Shih & Rupke 2010

Blowing Out the Dust Screen? SF Feedback

New Constraints on Inflows and Outflows in Major Mergers

Inflows

- Flatten gradients
- Gradients flatten quickly, Z offset comes later

Outflows

- Change with SFR
- AGN contribution?
- Blow out dust screen? SF feedback?