B. Rothberg

The Impact of Star-Formation and Gas Dissipation on Galaxy Kinematics

Mergers in the local universe present a unique opportunity for studying the metamorphoses of galaxies in detail. Yet, many studies and simulations show gasrich mergers do not contribute significantly to the overall star-formation rate and total mass function of galaxies. The ultimate implication is that Lambda-CDM and our current understanding of galaxy formation and evolution may be completely wrong. I will discuss recent results, based on high-resolution imaging and multi-wavelength spectroscopy, which demonstrate how star-formation and the presence of multiple stellar populations has lead to a serious underestimation of the dynamical masses of star-forming galaxies, in particular, Luminous & Ultraluminous Infrared Galaxies. The presence of Red Supergiants and Asymptotic Giant Branch stars can severely affect the global properties measured in a galaxy, including: mass, age, extinction, and star-formation rate. I will also discuss the impact of these stellar populations on studies of high redshift galaxies.

The Impact of Star-Formation & Gas Dissipation on the Kinematics of IR Luminous Mergers

Barry Rothberg

National Research Council Fellow/Naval Research Labs Collaboration with Jacqueline Fischer (NRL)

Outline

I. Motivation
II. The σ-Discrepancy
III. Dynamical Differences as a function of λ
IV. The Central ~1.5 kpc

Motivation - The BIG picture

Log stellar mass, Me

ACDM (cold-dark-matter)
 cosmology based on merging dark
 matter halos, therefore merging
 galaxies

Galaxies obey a mass-metallicity relationship - ellipticals built up by gas-rich mergers (or are they?)

Motivation - The BIG picture

- ACDM (cold-dark-matter) cosmology based on merging dark matter halos, therefore merging galaxies
- Galaxies obey a mass-metallicity relationship - ellipticals built up by gas-rich mergers (or are they?)

Motivation - The BIG picture

- Red-Sequence (RS) in place at z~I
- Lack of Bright blue progenitors which passively evolve onto highend of RS
- ULIRGs passively evolve onto lowmass end of RS?

- ACDM (cold-dark-matter) cosmology based on merging dark matter halos, therefore merging galaxies
- Galaxies obey a mass-metallicity relationship - ellipticals built up by gas-rich mergers (or are they?)

- For an <u>optically selected</u> mergers, Mglb & CaT absorption lines, $\sigma_{Merger} \approx \sigma_{Ellip}$
- B-band photometry + Mglb/CaT σ show mergers lie on high-mass end of Faber-Jackson

- Ellipticals obey mass & luminosity correlations (Faber-Jackson & Fundamental Plane)
- Toomre Hypothesis: gas-rich mergers obey elliptical correlations & form new, more massive galaxies

- Ellipticals obey mass & luminosity correlations (Faber-Jackson & Fundamental Plane)
- Toomre Hypothesis: gas-rich mergers obey elliptical correlations & form new, more massive galaxies

- Ellipticals obey mass & luminosity correlations (Faber-Jackson & Fundamental Plane)
- Toomre Hypothesis: gas-rich mergers obey elliptical correlations & form new, more massive galaxies

 Subsequent studies focused solely on LIRG/ULIRG samples (near-IR photometry/spectroscopy)

(e.g Doyon et al. 94; Shier et al. 94, 96, Shier & Fischer 98; James et al. 99; Genzel et al. 01, Tacconi et al. 02; Dasyra et al. 06)

High surface brightness, low σ

- Ellipticals obey mass & luminosity correlations (Faber-Jackson & Fundamental Plane)
- Toomre Hypothesis: gas-rich mergers obey elliptical correlations & form new, more massive galaxies

- K-band photometry + Call triplet (0.85 μm) spectroscopy to measure σ in 51 optically selected single nuclei mergers (Rothberg & Joseph 2006a,b)
- Most mergers lie **on** FP
- LIRG/ULIRGs lie offset in 1 area
- Offset primarily due to $<\mu_K>_{eff}$ NOT σ
- Same objects show
 SYSTEMATICALLY
 DIFFERENT σ at CaT and
 CO wavelengths

- K-band photometry + Call triplet (0.85 μm) spectroscopy to measure σ in 51 optically selected single nuclei mergers (Rothberg & Joseph 2006a,b)
- Most mergers lie **on** FP
- LIRG/ULIRGs lie offset in 1 area
- Offset primarily due to $<\mu_K>_{eff}$ NOT σ
- Same objects show
 SYSTEMATICALLY
 DIFFERENT σ at CaT and
 CO wavelengths

- K-band photometry + Call triplet (0.85 μm) spectroscopy to measure σ in 51 optically selected single nuclei mergers (Rothberg & Joseph 2006a,b)
- Most mergers lie **on** FP
- LIRG/ULIRGs lie offset in 1 area
- Offset primarily due to $<\mu_K>_{eff}$ NOT σ
- Same objects show
 SYSTEMATICALLY
 DIFFERENT of at CaT and
 CO wavelengths

σ -Discrepancy in Early-type Galaxies

- Silge & Gebhardt found CO yields up to 30% smaller σ in 25 nearby early-types (dominated by S0s)
- EWs of CO and Mg₂ did not correlate with each other
- Concluded dust was involved:
 - Cold stellar component with dust dominates CO σ
 - Hot stellar component dominates optical σ

 $r_{co} (\text{km s}^{-1})$

Mergers & Early-type Galaxies show σ-Discrepancy: Is there a problem with either Optical or IR σ?

Test the σ -Discrepancy

- Comparison of Optical (CaT for Mergers, CaT & Mglb for E's) and near-IR CO bandhead
- Compare 8 non-LIRGs & 23 "Pure" Ellipticals with 6 LIRGs
- Ellipticals within $I\sigma$ scatter of unity
- Evolution of slope from LIRGs \rightarrow non-LIRGs \rightarrow Ellipticals

σ -Discrepancy and L_{IR}

Introduce the parameter: σ_{frac} to test with other observed properties

• Strong correlation between L_{IR} and σ_{frac}

• Correction for σ :

$$\sigma_{\rm frac} = 0.17^{\pm 0.04} \log L_{\rm IR} - 1.67^{\pm 0.44} \ (\log L_{\rm IR} \ge 9.5).$$
 (7)

Head to Head: Optical vs near-IR

• *I*-band: merger-remnants \approx Elliptical Galaxies

• K-band: LIRG merger remnants clustered together

• These results are consistent with **BOTH** older LIRG/ULIRG studies and LD86,RJ06a

• Compare *M/L* of galaxies with evolution of a burst population (from Maraston 2005, Salpeter IMF, Solar Metallicity)

- Two Different ages for the I-band and K-band observations
- Mass ranges in the *I*-band clearly show LIRGs with $m > m^*$
- Once again, little variation between *I*-band and *K*-band observations of ellipticals

• M/L_K strongly correlated with σ_{frac}

Testing the Predictions for ULIRGs

• Comparison with ~9300 ellipticals from SDSS (0.02 < z < 0.15)

- 7 ULIRGs:
 - 3 measured CaT σ (Keck-2 ESI)
 - 4 corrected CO σ using Eq. 7 (RFI0)

Testing the Predictions for ULIRGs

- Comparison with ~9300 ellipticals from SDSS (0.02 < z < 0.15)
 - 7 ULIRGs:
 - 3 measured CaT σ (Keck-2 ESI)
 - 4 corrected CO σ using Eq. 7 (RFI0)

Testing the Predictions for ULIRGs

• Comparison with ~9300 ellipticals from SDSS (0.02 < z < 0.15)

• 7 ULIRGs:

3 - measured CaT σ (Keck-2 ESI)

4 - corrected CO σ using Eq. 7 (RFI0)

What is the Spatial Extent of the *I* vs. *K* Difference?

- Median value for Ellipticals is (I-K) ≈ 2
- (I-K) values are largerthan colors predictedby stellar populationmodels
- Highest (I-K) colors are concentrated on small scales in the central regions

- Simulations from Barnes (2002)
- Top row gas particles, bottom row particles weighted by local dissipation rate
- Gas disk forms in the center from dissipation
- Strong star-formation occurs → forms a disk of young stars

- Gaseous dissipation produces a strong starburst which creates a dense stellar core
- Prediction:
 - **Should** Observe an upturn in stellar luminosity profile (MH94, S00)

Gaseous Dissipation:

(Central few kpc)

Gaseous Dissipation:

(Central few kpc)

• First confirmation at K-band of "excess light" from young population

Surface Brightness profiles decomposed into old & young components

Used models to estimate fractional contribution

Central ~1.5 Kiloparsec: What colors and shapes tell us

- Can constrain properties of central region:
 - $M_{\rm K}$ constrains lower mass & age of central population (too bright for mass to be < 10⁹ M $_{\odot}$)
 - Total M_{Dyn} from CaT σ constrains upper mass of central population (total mass budget at 1.53 kpc ~ $10^{10} M_{\odot}$)
 - Mass limits ages of the populations to: t < 20 Myr or 20 Myr < t < 0.9 Gyr
 - (I-K) colors too red to come ONLY from young stars, dust is critical
 - K-band central shapes are disky (+a₄/a) and correlate with σ_{frac}

Central 1.5 kpc: Stellar Populations

- Equivalent widths of CaT match RGB stars, NOT RSG or AGB stars
- CaT wavelength range shows no evidence of RSG or AGB stars
- Near-IR (1-2.5µm) shows strong features associated with RSG and/or AGB stars

The Picture

- σ measured in the IR is dominated by young stars (RSGs or AGBs) rotating in a central stellar disk in the ULIRG/LIRG phase
- The central stellar disk is enshrouded by dust, acting as a coronagraph at $\lambda < I \mu m$
- CaT σ measurements are dominated by old, late-type stars from the progenitor spirals, and probes the *true* mass of the galaxy

The Picture

- σ measured in the IR is dominated by young stars (RSGs or AGBs) rotating in a central stellar disk in the ULIRG/LIRG phase
- The central stellar disk is enshrouded by dust, acting as a coronagraph at $\lambda < I \mu m$
- CaT σ measurements are dominated by old, late-type stars from the progenitor spirals, and probes the *true* mass of the galaxy

Closing the Loop - The Big Picture

- Different λ 's probe different stellar populations (kinematically & photometrically)
- Relying solely on one regime may skew the "truth"
- Stellar populations models need to carefully account for old & young if spectra are unavailable to measure kinematics or age-related features

Closing the Loop - The Big Picture

- Different λ 's probe different stellar populations (kinematically & photometrically)
- Relying solely on one regime may skew the "truth"
- Stellar populations models need to carefully account for old & young if spectra are unavailable to measure kinematics or age-related features

Closing the Loop - The Big Picture

- Different λ 's probe different stellar populations (kinematically & photometrically)
- Relying solely on one regime may skew the "truth"
- Stellar populations models need to carefully account for old & young if spectra are unavailable to measure kinematics or age-related features

Conclusions

- I. σ -Mismatch is a real phenomenon and correlates with other observed properties (L_{IR} , Dust, Shape, M/L, Radio Power)
- 2. IR-luminous mergers present two different faces to us depending on λ
 - a) Optical λ = old stellar populations dominate stellar absorption lines. Young population hidden by dust.
 - b) IR λ = young burst population
- 3. RFI0 ULIRG predictions: CaT/CO corrected σ show m >> m*
- 4. Presence of TWO populations complicates kinematics, mass, and age estimates as a function of λ

Future Work (ULIRGs)

- ULIRGs: IFU & simultaneous H-band imaging and spectroscopy of central few hundred pc (OSIRIS/ LGSAO Keck-2)
- Directly measure size, inclination, mass, & rotation of young central stellar disk
- CaT σ for complete sample of ULIRGs
- Use IFU data and CaT σ as two independent methods to estimate BH masses Questions, Comments, Complaints: <u>barry.rothberg@nrl.navy.mil</u>

