M. Imanishi

The AGN-starburst connections in nearby luminous infrared galaxies

We present the results of our systematic search for optically elusive, but intrinsically luminous buried AGNs in >100 nearby (z < 0.3) luminous infrared galaxies with $L(IR) > 10^{11}$ Lsun, classified optically as non-Seyferts. To disentangle AGNs and stars, we have performed

(1) infrared 2.5-35 micron low-resolution (R \sim 100) spectroscopy using Subaru, AKARI, and Spitzer, to estimate the strengths of PAH (polycyclic aromatic hydrocarbon) emission and dust absorption features,

(2) high-spatial-resolution infrared 20 micron imaging observations using Subaru and Gemini, to constrain the emission surface brightnesses of energy sources, and

(3) millimeter interferometric measurements of molecular gas flux ratios, which reflect the physical and chemical effects from AGNs and stars. Overall, all methods provided consistent pictures. We found that the energetic importance of buried AGNs is relatively higher in galaxies with higher infrared luminosities (where more stars will be formed), suggesting that AGN-starburst connections are luminosity dependent. Our results might be related to the AGN feedback scenario as the possible origin of the galaxy down-sizing phenomenon.

Luminous buried AGNs in LIRGs

AGN-starburst connections

Masa Imanishi

NAOJ (National Astronomical Observatory of Japan)

Subaru

Spitzer

Luminous energy sources behind dust

Luminous energy sources behind dust

Starburst

Luminous energy sources behind dust

Starburst

Mass accretion onto supermassive blackholes (>10⁶ Mo)

Luminous energy sources behind dust

Starburst

Mass accretion onto supermassive blackholes (>10⁶ Mo)

AGNs in (U)LIRGs are buried

(U)LIRGs have a large amount of nuclear gas and dust

Buried AGNs are elusive

>70% (U)LIRGs = non-Sy
Veilleux+99 (but see Yuan+10)

1. Infrared spectral shape PAHs are excited in starburst PDRs but destroyed near an AGN

1. Infrared spectral shape PAHs are excited in starburst PDRs

but destroyed near an AGN

Starburst(SB)

2. Dust absorption feature strength

2. Dust absorption feature strength

(Imanishi+06,07)

2.5-5 um

z>0.15 ULIRG

AGN+SB

3.5

Dust abs. strong

ad wavelength

4.5

2.5

AKARI

SB

LIRG (<10¹² Lo) (spatially extended)

SB

AKARI

LIRG (<10¹² Lo) (spatially extended)

3. Continuum slope

SB

unobscured AGN

3. Continuum slope

AKARI 2.5-5um

nearby(z<0.3) >130 sources
Opical non-Seyfert (U)LIRGs

Luminous buried AGNs ~ 50%

nearby(z<0.3) >130 sources
Opical non-Seyfert (U)LIRGs

Luminous buried AGNs ~ 50%

Buried AGNs (B-AGN) increase with L_{IR}

B-AGN luminosity (extinction-corrected)

~10-50% of L(IR)

$A_{3.3PAH} = Av/30$

Nishiyama+09

A_{3.3PAH} < 1 mag for Av < 30 mag

PAH = good SB indicator

SFR(Br α) ~ SFR(3.3PAH)

3.3PAH

200

8

(MUN)

Brα

614 (HII

L(PAH-derived SB)

~10-100% of L(IR)

B-AGN vs SB connections are luminosity dependent

see also Nardini+10

B-AGN vs SB connections are luminosity dependent

low M(star)

high M(star)

Galaxy down-sizing finished major SF at higher-z

Galaxy down-sizing finished major SF at higher-z

Galaxy down-sizing More massive galaxies have finished major SF at higher-z

Luminosity-dependent B-AGN - SB connections

Buried AGNs are common in non-Sy LIRGs

B-AGN vs SB connections are L-dependent

Imanishi+06 ApJ 637 114 (Subaru) Imanishi+07 ApJS 171 72 (Spitzer) Imanishi+08 PASJ 60 S489 (AKARI) Imanishi+10a ApJ 709 801 (Spitzer2) Imanishi+10b submitted (AKARI2)

End

Possibility of extreme SB ?

Exceptionally centrally-concentrated SB

HII-region only (no PDRs, no molecular gas)

Emission surface brightness

SB : < 10^13 Lo/kpc^2

Supported by theory

Thompson et al. 2005

Eddington-limited SB

At T<150K, <10^13Lo/kpc^2

Tcolor of ULIRGs = 60-80 K

Mitsubishipatten

>10^14Lo/kpc^2