A. Alberdi

Radio Supernovae: A Window into the Heart of Starburst Galaxies

High-resolution radio observations of the nuclear regions of Luminous and Ultraluminous Infrared Galaxies (ULIRGs) have shown that their radio structure consists of a compact high surface-brightness central radio source inmersed in a diffuse low brightness circumnuclear halo. While the central components could be associated with AGNs or compact star-forming regions, where radio supernovae are exploding, it is well known that the circumnuclear regions host bursts of star-formation. Studies of radio supernovae can provide essential information about stellar evolution and CSM/ISM properties in regions hidden by dust at optical and IR wavelengths. High-resolution radio observations of LIRGs can allow us to determine the core-collapse supernova rate in them as well as their star-formation rate.

Radio Supernovae: A Window into the Heart of Starburst Galaxies

Antxon Alberdi (IAA, CSIC)

(+ M.A. Pérez-Torres, C. Romero-Cañizales, L. Colina, J.M. Torrelles, A. Polatidis, S.T. Garrington ...)

Starbursts-2010 21 julio 2010

The observed radio/FLR spectrum of M82: steep, the flat, and the inverted

FIR/radio correlation

Radio Observations of Starburst Galaxies

□ Compact (\leq 150 pc) high surface brightness (T _b ≥ 10³ K) central radio source → generated by a point-like source (AGN) or by the combined effect of SNe and RSNe

 \Box Low surface brightness circumnuclear halo \rightarrow ongoing burst of star formation

Radio emission and RSNe in LI RGs

- Stars more massive than 8 M_{sun} result in CCSNe (Type I bc and II)
- Combining observed CCSNe rate and a reasonable I MF (Salpeter, Miller-Scalo,...) yields direct measure of current SFR
- Optical searches only able to discover SNe not severely affected by dust extinction
- Radio emission is free from extinction effects, so searches in radio for CCSNe are more promising to yield a true estimate of the CCSN rate

M82 at cm wavelengths

Supernovae and Supernova Remnants in M82

□ $L_{FIR} \sim 5.9 \times 10^{10} L_{sun}$; D = 3.2 Mpc; If CCSN rate ~ 2.7E-12 * L_fir (Mattila & Meikle 2001), then SN rate = 0.16 SN/yr

 \Box > 50 compact sources discovered in M82, most of them SNRs (16 HII regions). All of them are resolved with MERLIN+VLBI (80 mas = 1.2 pc)

□ The size of the remnant range from 5pc to 0.3pc

Supernovae and Supernova Remnants in M82

SNR expansion

 \rightarrow The relatively compact remnants in M82 are found to be expanding over a wide range of velocities, unrelated to their size

- Lower expansion velocities ~2000 km/s, in dense clouds

- Higher expansion velocities ~10000 km/s, outside or in front of dense H1/CO/OH clouds

 \rightarrow 43.31+592 expansion:

43.31+592 15 mas ~ 0.2 pc

0.5 pc

Radio Supernovae in Arp 220

 $> L_{IR} \sim 1.3 \times 10^{12} L_{sun}$; D = 77 Mpc

➤ A pair of Radio Nuclei separated by 370 pc: the Western nucleus is brigther than the eastern one

> Star Formation Rate: 50-100 $M_{sun}/yr \rightarrow Luminous SN Rate: 1.75-3.5 yr^{-1}$

➢ Arp 220 is ~ 50 times more luminous than M82 and confined to a smaller volume

Radio Supernovae in Arp 220

□ 20 RSNe in the E-Nucleus; 29 RSNe in the W-Nucleus

 \Box Four new RSNe appeared in one year \rightarrow SN Rate: 4±2 yr⁻¹

□ W-Nucleus more luminous: differential ff-absorption and expansion losses could be the reason

 \Box The light curves are surprisingly stable over a period of more than five years \rightarrow interaction with a dense I SM

Spectra and models of short-wavelength detected sources (fitted using a power law + free-free absorber)

The spectra varied from steep to flat, indicating the presence of both relatively young SN along with SNRs

The large number of bright, Type IIn-like SNe made the authors propose that the IMF of the stars in the nuclei of Arp 220 is a top-heavy one

Parra et al. ApJ, 659, 314 (2007)

Arp 220: Spectral study of SNe and SNRs

Detection of compact radio sources in Arp 220 at wavelengths shorter than 18 cm

Radio Supernovae in Arp 220 & M82

□ Arp 220 is ~ 50 times more luminous and is confined to a smaller volume

The W-Nucleus of Arp 220 is more compact and 3 times more luminous than the E-Nucleus: point sources are systematically stronger in the west

Lonsdale et al. ApJ 647, 185 (2006)

An extremely prolific SN factory in Arp 299-A revealed with the eEVN

Pérez-Torres et al. 2009, A&A 507, L17

Mrk 273, SN-factory + embedded AGN

10 mas resolution (7pc)

$\frac{30}{300} + \frac{30}{500} + \frac{3$

N2 Region 5 GHz EVN+MERLIN

 $L_{FIR} = 1.2 \times 10^{12} L_{sun}$

Active Star Forming Region with: •dM*/dt = 39 M_sun/yr • d(SN)/dt = 1.5 SN/yr

Mrk 273 @ 1.6
& 5 GHz,
AGN or
SNe/RSNe
burst?

(Bondi et al 2005)

SN 2000ft in NGC 7469

□ NGC 7469 is a highly luminous infrared, QSO-like, galaxy. □ There is evidence for a 10^7 M _{sun} BH □ L_{LR} ~ 5 x 10^{11} L _{sun} ; D: 70 Mpc; 1 mas= 0.32 pc

□ Ring: 1 Kpc

 SN 2000ft is located in the circumnuclear starburst, at a distance of 600 pc of the nucleus.

 \Box L _{SN2000ft} = 1.1 x 10 ²¹ W/Hz, very luminous

SN 2000ft in NGC 7469: Radio Light Curve

SN 2000ft in NGC 7469: Radio Light Curve

$$S(\mathrm{mJy}) = K_1 \left(\frac{\nu}{5 \mathrm{~GHz}}\right)^{\alpha} \left(\frac{t - t_0}{1 \mathrm{~day}}\right)^{\beta} e^{-\tau_{\mathrm{external}}} \left(\frac{1 - e^{-\tau_{\mathrm{CSM}_{\mathrm{clumps}}}}}{\tau_{\mathrm{CSM}_{\mathrm{clumps}}}}\right) \left(\frac{1 - e^{-\tau_{\mathrm{internal}}}}{\tau_{\mathrm{internal}}}\right)$$
(1)

□ Fitted time of the explosion: 10 May 2000

 \Box Fitted spectral index: $\alpha = -1.27$

 \Box Fitted power-law time decay: $\beta = -2.02$

 \Box Fitted 5 GHz flux at 1 day: K₁ = 4.45e5 mJy

□ $T_{external} = T_{CSM}$ (fitted 5 GHz RSG stellar wind T_{ff} at 1 day, K₂ = 1.67e7) + $T_{distant}$ (associated with a foreground HII region: K₄ ≥0.17). This value of the opacity implies the presence of an ionized layer along the LOS with an Emission Measure, EM= 1.60 x 10⁷ cm⁻⁶ pc)

Alberdi et al. ApJ 638, 938 (2006); Pérez-Torres et al. MNRAS 399, 1641 (2009)

SN 2000ft in NGC7469: A bright type-II RSN

- It is a extremely luminous radio supernova (1.1 \times 10^{28} erg s^{-1} Hz^{-1}), like SN79C, SN86J, SN88Z

- Fitting parameters are typical of type-II radio supernovae
- Mass loss rate \leq (4.7-5.1) x 10⁻⁵ M _{sun} / yr, typical of a RSG-progenitor

SN2000ft: CSM vs. ISM interaction (I)

First ~2100 days radio emission powered by circumstellar interaction. In the future, departure from standard behaviour will indicate radio emission is being powered by interaction with ISM

Pérez-Torres et al. 2009, MNRAS 399, 1641

SN2000ft: CSM vs. ISM interaction (II)

First ~2100 days radio emission powered by circumstellar interaction. In the future, departure from standard behaviour will indicate radio emission is being powered by interaction with ISM

- The ram pressure of the wind, $\rho_w v_w^2$, is at an age of 2147 days, of the order of 7.6 × 10⁻⁹ dyn cm⁻², still very high to be overcome by P_{ISM}.

(For comparison, in the central HII regions of M82, $P_{ISM} \sim 4 \times 10^{-9}$ dyn cm⁻², while it drops below 4×10^{-9} dyn cm⁻² at a distance of 540 pc. On the other hand, for the case of Arp 220, $P_{ISM} \ge 4 \times 10^{-9}$ dyn cm⁻², which explains the significant flattening in the flux density decay of some of the RSNe).

- The number density of the thermal electrons, 5100 cm⁻³, at an age of 2147 days, similar to expected values in the dusty, dense environments of Starbursts.

- The swept-up mass by the supernova shock after 2147 days is of the order of 0.29 M_{SUN} , assuming free expansion in a steady spherically-symmetric wind.

Pérez-Torres et al. 2009, MNRAS 399, 1641

The circumnuclear starburst in NGC 7469

Apart from SN 2000ft, there is no evidence for RSNe more luminous than about $L_{peak} \sim 6 \times 10^{26} \text{ erg s}^{-1}$ Hz⁻¹, suggesting that no other Type I I n SN has exploded since 2000 in the nuclear starburst of NGC 7469.

CCSN rate is $\leq 0.13 \#/yr$, in contrast with the CCSN rate = 2.7e-12 * L_fir $\rightarrow 0.81 \#/yr$

Pérez-Torres et al. 2009, MNRAS 399, 1641

The circumnuclear starburst in NGC 7469

- All of the RSNe with luminosities ranging from a few times 10^{25} to 6×10^{26} erg/s/Hz would go undetected (background emission of the galaxy 100 µJy);

- The bright, long-lived RSNe come from type III/IIn SNe (6.4%); the radio faint ones (peak luminosities of 5-20 × 10²⁵ erg/s/Hz) come from type IIP-IIb and are much more numerous (64.1%);

- Assuming the constant star-forming scenario, the radio luminosity function of CCSNe is top-heavy \rightarrow we would be only witnessing the explosion of very massive stars;

- Alternative scenario: there exists several localized Starbursts in NGC 7469, which started at different times and in different locations of the circumnuclear ring

The nuclear region of NGC 7469 at very high angular resolution

EVN + MERLIN at A18cm - March 2007

Alberdi et al. 2010 (in prep.)

The nuclear region of NGC 7469 at very high angular resolution

EVN + MERLIN at A18cm - March 2007 Alberdi et a

Alberdi et al. 2010 (in preparation)

The nuclear region of NGC 7469 at very high angular resolution

EVN + MERLIN at **A** 6cm - March 2007

Alberdi et al. 2010 (in prep.)

The nuclear region of NGC 7469 at very high angular resolution

It is still unclear whether these components trace a core-jet structure of an AGN or, alternatively, we are seeing compact starforming regions where individual, or clumps of supernovae, are exploding:

□ <u>in favour of an AGN</u>: i) no clear indications of structural and flux density variability; ii) a low supernova rate (based on the infrared luminosity); iii) a kind of jet-like structure in some of the components; iv) there are evidences of a BH from reverb-Mapping.

□ in favour of young starforming regions, where core-collapse supernovae are currently exploding: i) all the nuclear components show steep spectra, with values between -1 and -0.3; ii) all the VLBI sources are within an area of 50 pc, which is also the size of the nuclear starburst (Davies et al. 2004; ApJ 602, 148); iii) for all the components, T_b>10⁶ K; L~10²⁷ erg s⁻¹ Hz⁻¹.

Alberdi et al. 2010 (in prep.)

SN 2004ip in IRAS 18293-3413

□ SN 2004ip detected at NIR (2.2 microns) using NACO adaptive optics system on the ESO VLT

□ d from nucleus ~ 500 pc (projected), so one of the closest CCSNe to a nucleus

D = 79 Mpc

 \Box L_fir = 6.5E11 L_sun; \rightarrow CCSN rate = 1. 0 #/yr (Mattila et al. (2007))

Mattila et al. ApJ, 659, L9 (2007)

Radio detection of SN 2004ip

Contours of 8.4 GHz observations of I RAS 18293–3413 made on 2007 June 11 with the VLA, overlaid on the NACO image (shown with an inverted brightness scale).

Obs-ns on June 2007, about 3 yr after NIR detection.

Confirms SN 2004ip was a CCSN

Pérez-Torres et al. ApJ, 671, L21 (2007)

SN 2004ip: a very bright and long lasting SN

Flux ~ 460 microJy, corresponding to L ~ 3.5E27 erg/s/Hz, several times brighter than SN2000ft at such Late epoch.

Consistent with SN 2004ip being a Type I I n CCSN

At v_{sh} =10000 km/s, r ~ 0.03 pc. Unless mass loss rate is huge, or P_{ISM} very large, SN 2004ip is still in its radio SN phase, being powered by prominent interaction with the CSM

SN 2000ft light curves and SN 2004ip radio detection datum Pérez-Torres et al. ApJ, 671, L21 (2007)

SN 2008cs in IRAS 17138-1017

SN 2008cs detected using ALTAIR/NIRI adaptive-optics system on GEMINI South (NICMOS:23 Sept 04; ALTAIR: 21 Apr 08)
D = 75 Mpc; d from nucleus ~ 1.3 Kpc (projected)
L_fir = 3E11 L_sun; Star Formation Rate: 21-46Msun/yr; CCSN rate = 0.7 #/yr

Radio detection of SN 2008cs

Contours of 22 GHz observations of I RAS 17138-1017 made on 2008 May 10 with the VLA in A configuration, overlaid in the NI R-image

S = 445±75 µJy corresponding to L ~ 3.1E27 erg/s/Hz (SN 2000ft has 1.76 mJy at its peak, corresponding to L ~ 1E28 erg/s/Hz)

Confirms SN 2008cs was a CCSN

SN 2004iq in IRAS 17138-1017

SN 2004iq detected using NI CMOS images on 23 Sept 04 (not detected with ALTAIR on 21 Apr 08)
D = 75 Mpc; d from nucleus ~ 660 pc(projected)

The Farthest and brightest ULI RGs in the local Universe

Preliminary results: taking the EVN to its limit to image faint sources buried in a considerably strong extended emission.

Source	Z	log(LFIR/Lsun)
IRAS 07251	0.087	12.32
IRAS 19295	0.088	12.37
IRAS 19542	0.065	12.04
IRAS 23365	0.064	12.13

IRAS 0725 @ 344 Mpc,

CCSN rate = 8 #/yr

First epoch at 18cm: February 2008

IRAS 2336 @ 252 Mpc,

CCSN rate = 5 #/yr

First epoch at 18cm: February 2008

Second epoch at 18cm: March 2009

Summary

- A direct estimate of the CCSN rate in nearby LIRGs can be obtained by a few-year long radio monitoring of a sample of Starburst Galaxies
- The monitoring of the brightest events will allow to characterize the kind of SNe that occur in starbursts
- Multi-frequency observations discern (young) SNe from SNRs
- The combination of such observations and MC simulations can further shed light on the IMF of those galaxies, and test starburst models
- Very high-resolution radio imaging of LI RGs are able to disentangle AGN from starforming regions up to the most distant ULI RGs in our local Universe